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Anti-HK antibody inhibits the plasma contact system by blocking
prekallikrein and factor XI activation in vivo
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Key Points

• 3E8 anti-HK antibody
inhibits thrombotic and
inflammatory pathways
of the contact system
ex vivo and in vivo.

• 3E8 blocks the binding
of PK and FXI to HK
both ex vivo and in vivo.
pdf/7/7/1156/2041441
A dysregulated plasma contact system is involved in various pathological conditions, such

as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the

3E8 anti–high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and

bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not

only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their

binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system–induced

bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely

because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein

(PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both

thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of

the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and

dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to

inhibit contact system activation in vivo, which may provide an effective method to treat

human diseases involving contact system dysregulation.
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Introduction

The plasma contact system, which is mainly composed of factor XII (FXII), prekallikrein (PK), FXI, and
high molecular weight kininogen (HK), plays important roles in both thrombosis and inflammation.1-4

Many factors and pathological conditions can activate FXII.5-9 Activation of FXI by activated FXII
(FXIIa) triggers the intrinsic clotting pathway, leading to thrombin generation and fibrin clot forma-
tion.7,10,11 FXIIa also activates PK to kallikrein (PKa), which leads to the release of bradykinin from its
precursor HK and subsequent activation of inflammatory processes.7,12-17 PKa can positively feedback
to activate FXII to amplify contact system activation. This system works most efficiently when PK and
FXI are bound to HK.18-22

Dysregulation of the contact system is involved in various disease conditions, such as sickle cell
anemia,23 hereditary angioedema,24-26 inflammatory bowel disease,27,28 Alzheimer disease,7,29,30

sepsis,31 lupus,32 arthritis,33,34 cancer metastasis,35 and other pathological conditions.3,16,36-43

Importantly, patients with a deficient contact system do not bleed,11 making it an ideal target for
developing inhibitors.
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HK is a nonenzymatic cofactor that allows for optimal activation of
the contact system; it circulates in the blood complexed with PK or
FXI,21,44 thus playing an important role in both the inflammatory and
thrombotic pathways. Therefore, targeting HK may provide addi-
tional options to interfere with contact system activation.

To study the effects of targeting HK in contact system activation,
we generated a hamster monoclonal antibody (clone 3E8) against
a 20–amino acid region of HK’s domain 6 (the PK/FXI binding
site).45 The 3E8 anti–HK antibody blocks both dextran sulfate
(DXS)– and amyloid-β (Aβ)–induced HK cleavage and bradykinin
generation in human plasma ex vivo.13 The 20-residue peptide
abolishes the protective effect of 3E8 from contact system
activation–induced HK cleavage, confirming that 3E8’s effect
occurs because of binding to the PK/FXI binding site on HK. 3E8
has high binding affinity for human HK (KD = 168 ± 38 pM) and
pulls down HK but not FXII or PK from normal human plasma
(NHP). It disassembles HK/PK and HK/FXI complexes in NHP in
the absence of a contact system activator, but it does not affect HK
binding to negatively-charged surfaces such as Aβ.46

In this study, we focused on the in vivo effects of 3E8 and the
mechanisms by which 3E8 inhibits contact system activation. Our
results show that 3E8 effectively blocked HK cleavage and bra-
dykinin generation in vivo, and the enzymes responsible for plasma
contact system activation, such as FXII, FXI, and PK, were inhibited
by 3E8 IV injection in vivo. Therefore, to our knowledge, our results
reveal a novel mechanism and strategy to inhibit plasma contact
system activation that works effectively both ex vivo and in vivo,
which may provide an additional option for treating human diseases
involving contact system dysregulation.

Materials and methods

Antibodies and materials

The 3E8 anti–HK antibody was prepared as described previously.45

For all reagent sources and preparations, see supplemental
Materials and Methods.

Animals

All animal experiments were conducted in accordance with the
guidelines of the US National Institutes of Health guide for the care
and use of laboratory animals and with approval from the animal
care and use committee of The Rockefeller University. For details,
see supplemental Materials and Methods.

Mouse plasma preparation

Blood was collected through either retro-orbital (RO) plexus or by
tail clipping.12 For RO bleeding, mice were anesthetized and treated
as described in supplemental Materials and Methods, their RO
plexus was penetrated with the coated capillary tube, and blood was
collected into EDTA-coated tubes. Platelet poor plasma was pre-
pared and kept at −80◦C until analysis. For tail clipping, a tiny piece
of soft tissue at the end of the tail was clipped. Blood was collected
into EDTA-coated tubes for plasma preparation. Pulldown and
western blot experiments are described in “Pulldown experiments”
and “Western blotting.”

Human blood collection and plasma preparation

Collection and preparation of human plasma was approved by The
Rockefeller University institutional review board. Blood from healthy
11 APRIL 2023 • VOLUME 7, NUMBER 7
human donors (n = 8) who had given informed, written consent
was drawn with 21-gauge 0.75 inch butterfly needles with a mul-
tiadapter for S-Monovette into S-Monovette tubes containing 1:10
volume 105 mM trisodium citrate solution or EDTA (final concen-
tration, 5 mM) at The Rockefeller University Hospital. Platelet poor
plasma was prepared as described previously.45

Pulldown experiments

Biotinylated human HK (B-hHK)/phosphate-buffered saline (PBS),
B-hHK/3E8 (1:3 M ratio), and B-hHK/hamster immunoglobulin G
(IgG, 1:3 M ratio) mixtures were incubated with kininogen-deficient
(KN-DF) plasma or NHP at 37◦C for 20 minutes (90 μg hHK/mL
plasma total).47 In 2B7 anti–HK antibody pulldown experiment,
NHP was incubated with 3E8/PBS/IgG, then incubated with B-
2B7 at 37◦C for 20 minutes. In B-hHK injected mouse plasma
pulldown experiments, mouse plasma collected 30 minutes after
the injection was used for the study. Dynabeads M-280 Strepta-
vidin was used to pull down the B-hHK or hHK/bound protein
complex from human or mouse plasmas, according to the manu-
facturer’s instructions. Samples were eluted with sodium dodecyl
sulfate sample buffer and analyzed by western blotting.

DXS treatment

KN-DF human plasma was incubated with hHK/PBS, hHK/3E8, or
hHK/hamster IgG at 37◦C for 20 minutes. DXS was added and
incubated at 37◦C for 60 minutes. For NHP, PBS, 3E8, or hamster
IgG was added and incubated at 37◦C for 20 minutes, followed by
DXS for 60 minutes at 37◦C. Samples were then analyzed by
western blotting.

Western blotting

Western blots were performed as described previously.48 For
details, see supplemental Materials and Methods.

FXIIa, PKa, and FXIa activity assays

FXIIa and PKa activities were measured using chromogenic sub-
strate S2302.49 FXIa activity was measured using chromogenic
substrate S2366.50 For details on these assays, see supplemental
Materials and Methods.

Statistical analyses

All statistical analyses were performed using GraphPad Prism
software. Comparisons among multiple groups were performed
using 1-way analysis of variance followed by Newman-Keuls mul-
tiple comparison test.

Results

3E8 anti–HK antibody inhibits DXS-induced hHK

cleavage and bradykinin production in KN-1 knockout

(KN1-KO) mice in vivo

We showed previously that the 3E8 anti–HK antibody blocks DXS-
or Aβ-induced HK cleavage in NHP ex vivo.13 This antibody was
raised against hHK, which shares only ~56% homology to mouse
HK (mHK) (data not shown), and therefore does not recognize
mHK (data not shown). To analyze whether 3E8 can inhibit hHK
cleavage in vivo, we used KN1-KO mice51 and IV-injected hHK with
PBS, 3E8 anti–HK antibody, or hamster IgG. Thirty minutes after
IN VIVO MECHANISMS OF AN HK-TARGETED ANTIBODY 1157
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hHK injection, plasma was collected and then DXS, a strong
contact system activator,13,52,53 was intraperitoneally injected to
induce mouse contact system activation. One or 2 hours after DXS
injection, mouse plasma was prepared for western blot analysis
(Figure 1A). Our results show that the amount of hHK in mouse
plasma was similar among PBS-, 3E8-, or IgG-injected mice before
DXS administration (Figure 1B-D). One or 2 hours after DXS
injection, hHK was cleaved and intact hHK was dramatically
decreased in hHK/PBS- and hHK/IgG-injected mice. However, in
hHK/3E8-injected mice, hHK was protected from cleavage even 2
hours after DXS injection (Figure 1C-D). Because DXS is a very
strong contact system activator, it is not surprising to observe
some hHK cleavage 2 hours after DXS injection in the presence of
3E8 anti–HK antibody (Figure 1C-D). Plasma from 3E8-injected
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mice showed significantly less bradykinin, indicating 3E8 pre-
vented DXS-induced HK cleavage and bradykinin production
in vivo (Figure 1E). Because the half-life of hHK in mouse circula-
tion is ~24 hours (supplemental Figure 1), the disappearance of
hHK in mouse blood after injection is a result of DXS-induced
plasma contact system activation and not due to a short half-life
of hHK. KN1-KO mouse plasma was confirmed with an anti-
mouse HK antibody (Figure 1B), which does not crossreact with
hHK. Plasma from a wild-type mouse was used as a control for anti-
mouse and antihuman HK antibodies (Figure 1B). Although these
results show that the 3E8 anti–HK antibody inhibited DXS-induced
hHK cleavage and bradykinin generation in vivo, they also show
that the mouse contact system, once activated, can cleave the
injected hHK protein in vivo.
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3E8 anti–HK antibody inhibits DXS-induced hHK

cleavage by blocking mouse PK and mouse FXI from

binding to hHK in vivo

We analyzed the mechanism by which 3E8 anti–HK antibody
inhibits DXS-induced hHK cleavage in vivo. B-hHK was IV injected
with PBS or 3E8 anti–HK antibody in KN1-KO mice. Thirty minutes
later, mouse plasma was collected and used to pull down B-hHK–
bound proteins in mouse blood in the presence or absence of 3E8
anti–HK antibody. As expected, hHK was present in the injected
mouse plasma, and hamster IgG was present in the 3E8 antibody–
injected mouse plasma but not in PBS-injected mouse plasma
(Figure 2A, lanes 1 and 2). Mouse PK (mPK), mFXI, mFXII, and
mouse albumin (control) were similarly detected in B-hHK/PBS–
and B-hHK/3E8–injected mouse plasma (Figure 2A, lanes 1 and
2). Streptavidin beads were used to pull down B-hHK from both
hHK/PBS- and hHK/3E8-injected mouse plasma. The hamster IgG
was only pulled down (through the binding of 3E8 to hHK) from B-
hHK/3E8–injected mouse plasma, and mPK and mFXI were only
pulled down in B-hHK/PBS–injected mouse plasma (Figure 2A,
lanes 3 and 4). mFXII and mouse albumin were not pulled down in
any plasma (Figure 2A, lanes 3 and 4). Statistical analysis showed
that the 3E8 antibody blocking activity against mPK and mFXI
binding to B-hHK is highly significant (Figure 2B-C). These results
show that injected B-hHK binds to mPK and mFXI and that the 3E8
anti–HK antibody blocked this binding. Our results also show that
B-hHK did not bind to mFXII or mouse albumin, indicating the
specificity of B-hHK/mPK and B-hHK/mFXI binding.
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Blocking mPK or mFXI binding to hHK by 3E8

anti–HK antibody inhibits DXS-induced mouse

contact system thrombotic and inflammatory

pathway activation in vivo

We further analyzed the effects of blocking hHK/mPK and hHK/
mFXI binding on DXS-induced mouse contact system activation
in vivo. Similar to that in Figure 1, hHK cleavage was protected in
hHK/3E8-injected mice but neither in hHK/PBS- nor in hHK/ham-
ster IgG–injected mice 2 hours after DXS injection (Figure 3A).
3E8 injection also inhibited mPK, mFXI, and mFXII activation in
mouse plasma (Figure 3A, lane 2 vs lanes 1 and 3, Figure 3A-D).
mPKa (cleaved and activated from PK) was significantly less in
hHK/3E8-injected mouse plasma than in hHK/PBS- or hHK/ham-
ster IgG–injected mouse plasma (Figure 3A-B), indicating less
contact activation and mPK cleavage in the presence of 3E8. There
was significantly more mFXI in hHK/3E8-injected mouse plasma
than in hHK/PBS- or hHK/IgG-injected mouse plasma (Figure 3A,C),
indicating less mFXI was cleaved and activated in the presence of
3E8. Interestingly, even though mFXII did not directly bind to hHK
(Figure 2A), the presence of 3E8 prevented mFXII activation by
DXS, because there was significantly more mFXII in plasma from
hHK/3E8-injected mice than that from hHK/PBS- or hHK/IgG-
injected mice, indicating less mFXII cleavage and activation in
hHK/3E8-injected mice (Figure 3A,D). We also found that 3E8
significantly reduced the activities of PKa, FXIa, and FXIIa in mouse
plasma after DXS injection when compared with those in PBS or
IgG groups (Figure 3E-G; representative kinetic activity curves are
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shown in supplemental Figure 2). These results show that 3E8 can
inhibit (1) HK cleavage and bradykinin production in vivo and (2)
FXI and PK binding to HK in vivo, which subsequently prevents
FXII, FXI, and PK activation. Therefore, the 3E8 antibody inhibits
activation of both the inflammatory (via inhibition of mPK activation
and HK cleavage) and thrombotic (via inhibition of mFXI activation)
pathways of the plasma contact system in vivo.

3E8 anti–HK antibody blocks hPK and hFXI binding

to hHK and inhibits human contact system activation

and HK cleavage in KN-DF human plasma ex vivo

Because 3E8 inhibited the mouse contact system and hHK cleav-
age by blocking mPK and mFXI binding to hHK in vivo, we further
analyzed the effects of 3E8 on hHK binding to hPK and hFXI in KN-
DF human plasma ex vivo. B-hHK in the presence or absence of
3E8 anti–HK antibody or hamster IgG was incubated with KN-DF
human plasma at 37◦C for 20 minutes. Streptavidin was used to
1160 CHEN et al
pull down B-hHK and any bound proteins. As expected, hHK was
pulled down under all conditions (Figure 4A). Hamster IgG was also
pulled down from KN-DF plasma incubated with B-hHK/3E8, but
hamster IgG was not pulled down in KN-DF plasma incubated with
B-hHK/IgG, indicating the specific binding of 3E8 antibody to B-
hHK (Figure 4A; Hamster IgG band, lane 2 vs lanes 1 and 3). hPK
and hFXI were pulled down from B-hHK/PBS- and B-hHK/IgG-
treated KN-DF plasma but not from B-hHK/3E8-treated KN-DF
plasma, indicating that hPK and hFXI binding to B-hHK was
blocked by 3E8 anti–HK antibody. hFXII and human albumin were
not pulled down from any of the samples (Figure 4A), indicating the
specificity of hHK/hPK and hHK/hFXI binding. Statistical analysis
showed that the ability of 3E8 anti–HK antibody to block hHK/hPK
and hHK/hFXI binding was highly significant (Figures 4B-C).

We then examined if 3E8’s ability to block hHK/hPK and hHK/hFXI
binding also prevented activation of hPK and hFXI after DXS
administration in KN-DF plasma ex vivo. hHK/PBS, hHK/3E8, or
11 APRIL 2023 • VOLUME 7, NUMBER 7
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hHK/hamster IgG was added to KN-DF human plasma and incu-
bated at 37◦C for 20 minutes, and then DXS was added and
incubated at 37◦C for additional 60 minutes to activate the contact
system. After treatment, samples were analyzed by western blotting
and chromogenic activity assays. As expected, hHK cleavage was
blocked in the presence of 3E8, but not PBS- or hamster
IgG–treated KN-DF human plasma (Figure 5A-B). More interest-
ingly, activation of hPK, hFXI, and hFXII was inhibited in
3E8-treated KN-DF human plasma (Figure 5A, compare lane 2 with
lanes 1 and 3, and 5C-E). There is significantly more hPK and hFXI
(inactive forms) in hHK/3E8-treated KN-DF human plasma than in
hHK/PBS- or hHK/IgG-treated plasma (Figure 5A,C,D). Further-
more, there was significantly less hPKa and hFXIa enzymatic
activity in hHK/3E8-treated KN-DF human plasma compared with
that in hHK/PBS- or hHK/IgG-treated plasma. Levels of hPKa and
hFXIa after hHK/3E8 and DXS treatment were similar to the levels
of KN-DF plasma without DXS treatment (Figure 5F-G, first and
third bars; supplemental Figure 3A-B, representative kinetic activity
curves). Together, these data indicate that 3E8 prevented activa-
tion of hPK and hFXI by DXS. There was significantly less activated
hFXII (hFXIIa) in hHK/3E8-treated KN-DF human plasma compared
with that in hHK/PBS- or hHK/IgG-treated plasma (Figure 5A,E). In
DXS-treated samples, the activity of hFXIIa in hHK/3E8-treated
KN-DF plasma was significantly lower than that in hHK/PBS- or
hHK/IgG-treated plasma, but was significantly higher than plasma
without DXS treatment (Figure 5H; supplemental Figure 3C,
representative kinetic activity curve), indicating that 3E8 inhibits
positive feedback activation of FXII by PKa but does not affect
DXS-induced FXII autoactivation (Figure 5H).

To determine whether the 3E8 anti–HK antibody can block PKa
binding to HK and therefore directly inhibit PKa cleavage of HK,
HK/PKa binding was analyzed by enzyme-linked immunosorbent
11 APRIL 2023 • VOLUME 7, NUMBER 7
assay. The presence of 3E8 dramatically reduced HK binding to
PKa (supplemental Figure 4A). To determine whether 3E8 could
directly prevent HK cleavage by PKa, PKa was added to PK-DF
human plasma in the presence of different concentrations of
3E8. We found that 3E8 dose-dependently inhibited PKa cleavage
of HK (supplemental Figure 4B-C). Taken together, these results
suggest that 3E8 blocks both PK and PKa from binding to HK,
inhibits PK activation, and prevents PKa from cleaving HK.

3E8 anti–HK antibody inhibits activation of plasma

contact system thrombotic and inflammatory

pathways by blocking binding of hPK and hFXI to

domain 6 of hHK in NHP ex vivo

Addition of 3E8 anti–HK antibody to KN-DF human plasma, which
lacks HK 1) blocked hPK and hFXI binding to exogenously added
hHK and 2) prevented DXS-induced contact system activation and
hHK cleavage. We then investigated how 3E8 affects B-hHK
interactions with contact system proteins in NHP, which has normal
levels of endogenous HK. B-hHK/PBS, B-hHK/3E8, or B-hHK/
hamster IgG was added to NHP and incubated at 37◦C for 20
minutes. Streptavidin was used to pull down B-hHK and any bound
proteins. As expected, B-hHKwas pulled down from all treated NHP
groups. 3E8 was pulled down with B-hHK, but control hamster IgG
was not, indicating specificity of 3E8 antibody (Figure 6A, Hamster
IgG blot, lane 2 vs lanes 1 and 3). hPK and hFXI were pulled down
fromB-hHK/PBS– and B-hHK/IgG–incubated NHP, but not fromB-
hHK/3E8-incubated NHP, indicating that 3E8 blocked the binding of
hPK and hFXI to B-hHK in NHP (Figure 6A-C). hFXII and human
albumin were not pulled down from any of the NHP groups
(Figure 6A). These results indicate that in NHP, which has normal
levels of HK, addition of exogenous B-hHK can still bind hPK and
hFXI, but 3E8 anti–HK antibody can block this binding.
IN VIVO MECHANISMS OF AN HK-TARGETED ANTIBODY 1161
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We then investigated the effects of 3E8 on activation of hPK, hFXI,
and hFXII in NHP after DXS treatment. NHP was incubated with
PBS, 3E8 antibody, or hamster IgG at 37◦C for 20 minutes, then
DXS was added to induce contact system activation. Samples
were analyzed. As shown previously, 3E8 blocked hHK cleavage12

(Figure 7A-B). Moreover, 3E8 inhibited activation of hPK, hFXI, and
hFXII activation (Figure 7A, lane 2 vs lanes 1 and 3,C-E). Levels of
inactive hPK and hFXI are significantly lower in NHP treated with
PBS or IgG because DXS is activating them to hPKa and hFXIa
(Figure 7A,C,D). Furthermore, the enzymatic activities of hPKa and
FXIa were significantly less in 3E8-treated NHP than those in PBS
or IgG groups and were similar to the levels of control plasma
without DXS treatment (Figure 7F-G, first and third bars;
supplemental Figure 5A-B, representative kinetic activity curves),
indicating that 3E8 inhibited DXS-induced PK and FXI activation
and maintained levels of hPK and hFXI. The expression level of
1162 CHEN et al
hFXIIa was significantly less in 3E8-treated NHP than that in PBS-
or IgG-treated NHP, suggesting 3E8’s protection against activation
of FXII in NHP (Figure 7A,E). In DXS-treated samples, the activity of
hFXIIa in 3E8-treated NHP was significantly lower than that in PBS-
or IgG-treated plasma but was significantly higher than that in
plasma without DXS treatment (Figure 7H; supplemental
Figure 5C, representative kinetic activity curve), indicating that
3E8 inhibited positive feedback activation of FXII by PKa but did
not affect DXS-induced FXII autoactivation, which is independent
of PKa (Figure 7H).

We further analyzed the 3E8 and FXII interaction by testing the
binding between biotinylated 3E8 and purified HK or FXII. We
found that biotinylated 3E8 binds to HK but not FXII (supplemental
Figure 6A). In addition, DXS-induced purified FXII autoactivation,
but 3E8 did not affect DXS-mediated FXII autoactivation
11 APRIL 2023 • VOLUME 7, NUMBER 7
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(supplemental Figure 6B-C). These results further show that 3E8
only blocked PKa-mediated feedback activation of FXII (Figures 5H
and 7H; supplemental Figure 6B-C).

3E8 does not recognize the KN isoform that lacks domain 6 (low
molecular weight KN[LK]),46 indicating that its effect on contact
activation is through its binding to HK’s domain 6. We performed a
competition experiment using B-HK and molar excess of non-
biotinylated HK or nonbiotinylated LK. The binding of B-HK to 3E8
was dramatically decreased in the presence of nonbiotinylated HK,
but LK did not have an effect on B-HK/3E8 binding (supplemental
Figure 7A). This result indicates 3E8 only interacts with KN iso-
forms that have domain 6.

KN-DF human plasma lacks both HK and LK.46 DXS induced a
significant increase in FXII activation in KN-DF plasma compared
with that in KN-DF plasma without DXS treatment, indicating DXS-
mediated FXII autoactivation, which is independent of HK. Addition
of purified HK to KN-DF plasma at its physiological concentration
(666 nM) further increased DXS-induced FXII activation signifi-
cantly. This additional increase in FXII activation indicates the
positive feedback activation of FXII by PKa, which depends on the
binding of PK to HK. However, this FXII activation by addition of HK
is blocked by 3E8 antibody (supplemental Figure 7B). Addition of
LK to KN-DF plasma did not have an effect on DXS-induced FXII
activation, and 3E8 did not have an effect on LK in DXS-mediated
FXII activation (supplemental Figure 7B). These results show that
3E8 inhibited contact system activation through binding to HK’s
domain 6, whereas 3E8 had no effect on LK, which lacks domain 6.
11 APRIL 2023 • VOLUME 7, NUMBER 7
We also investigated the effects of 3E8 on plasmin-3,43 or kaolin54-
induced HK cleavage in NHP. Our results show that 3E8 inhibited
plasmin-induced HK cleavage (supplemental Figure 8), and kaolin-
induced HK cleavage and PK and FXI activation (supplemental
Figure 9). Furthermore, 3E8 blocked PKa-mediated feedback
activation of FXII in kaolin-induced contact system activation
(supplemental Figure 9). These results show that 3E8 not only
inhibited DXS-induced contact system activation but also other
reagent-mediated HK cleavage or contact system activation.

Discussion

hHK consists of 6 domains (designated D1-D6). D6 contains the
PK and FXI binding sites, which partially overlap. Previous studies
identified a 31–amino acid residue region of HK as the binding site
for PK and FXI and showed that antibodies raised against this
region inhibit DXS-induced contact system activation ex vivo.55,56

Our present work focuses on analyzing the in vivo effects of the
3E8 anti–HK antibody on contact system activation in mouse
models and the in vivo mechanism by which 3E8 blocks HK
cleavage and inhibits DXS-induced contact system activation.

Our results show that DXS can activate the mouse contact system
and cleave injected hHK, and the 3E8 anti–HK antibody can pre-
vent hHK cleavage and bradykinin production by the DXS-induced
activated mouse contact system in vivo. These data suggest that
this mouse model could be used to further analyze the mechanism
of the effects of 3E8 on the plasma contact system (Figure 1).
Experiments using B-hHK showed that mPK and mFXI bind to
IN VIVO MECHANISMS OF AN HK-TARGETED ANTIBODY 1163



DXS 1hr

hH
K

/P
B

S

hH
K

/3
E

8

hH
K

/I
gG

****

F H

PK
a 

ac
tiv

ity
 (4

05
 n

m
)

0.0

0.1

0.2

0.3

C
on

tr
ol

****
ns

FX
Ia 

ac
tiv

ity
 (4

05
 n

m
)

0.00

0.02

0.04

0.06

0.08

DXS 1hr

hH
K

/P
B

S

hH
K

/3
E

8

hH
K

/I
gG

C
on

tr
ol

********
ns

FX
IIa

 a
ct

ivi
ty

 (4
05

 n
m

)

0.00

0.05

0.10

0.15

0.20

0.25 ********
****

DXS 1hr

hH
K

/P
B

S

hH
K

/3
E

8

hH
K

/I
gG

C
on

tr
ol

G

75kDa hPK

NHP+DXS

P
B

S

3E
8

Ig
G

150kDa hFXI

75kDa

1 2 3

hTF

100kDa hHK

hFXIIa50kDa

A

P
B

S

3E
8

Ig
G

hH
K/

TF

DXS

**** ****

B

0

50

100

150

200

3E
8

Ig
G

hP
K/

TF

**** ****

DXS

C

P
B

S

0

50

100

150

200

FX
I/T

F

3E
8

Ig
G

** ***

DXS

D

P
B

S

0

20

40

60

80

3E
8

Ig
G

FX
IIa

/T
F

* **

DXS

E

P
B

S

0

60

30

90

120

150

Figure 7. Blocking hPK or hFXI binding to hHK inhibits activation of both contact system thrombotic and inflammatory pathways in NHP ex vivo. hHK as well as

either PBS, 3E8, or hamster IgG were added to NHP and incubated at 37◦C for 20 minutes. DXS was then added and incubated at 37◦C for additional 60 minutes to activate the

plasma contact system. (A) Samples were analyzed via western blotting. TF was used for normalization. (B) As expected, hHK cleavage by DXS-induced contact system activation

was blocked by 3E8 antibody but occurred in plasma samples containing PBS or IgG. (C,D) hPK and hFXI levels were significantly higher in NHP treated with 3E8 rather than in

PBS or IgG, indicating that 3E8 prevented hPK and hFXI cleavage and activation by DXS. (E) Levels of hFXIIa were significantly lower in NHP treated with 3E8 than with PBS or

hamster IgG, indicating that 3E8 indirectly allows for less hFXII cleavage and activation in NHP ex vivo. (F-H) The 3E8 antibody significantly inhibited PKa (F), FXIa (G), and FXIIa

(H) activities when compared with PBS- or IgG-treated NHP. Activity bar graphs were prepared from cumulative data at 15 minute measurements. n = 8 per group. Data are

denoted as mean ± SEM. *P≤.05, **P≤.01, ***P≤.001, ****P≤.0001.

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/7/7/1156/2041441/blooda_adv-2021-006485-m

ain.pdf by guest on 30 M
arch 2023
injected hHK, and the presence of 3E8 blocked these bindings
in vivo (Figure 2). Moreover, IV injection of 3E8 also inhibited DXS-
induced activation of mFXII, mPK, and mFXI in vivo (Figure 3).
Examining whether anti-HK antibody 3E8 has a beneficial
antithrombotic/anti-inflammatory effect in animal models in vivo will
be the focus of future studies.

Ex vivo analyses using KN-DF and NHP revealed that 3E8 blocked
binding of hPK and hFXI to hHK, which also inhibited hPK and hFXI
activation by DXS (Figures 4-7). Interestingly, FXII activation was
also inhibited by 3E8 both ex vivo and in vivo (Figures 3, 5, and 7),
likely because of inhibition of PKa’s positive feedback activation of
FXII, which depends on PK’s binding to HK.

Based on our ex vivo and in vivo results, we hypothesize the
following model for the effects of 3E8 anti–HK antibody on plasma
contact system activation: (1) In normal plasma, PK and FXI can
independently bind to HK;44,57 (2) FXII binds to an activator and is
autoactivated to FXIIa, which initiates contact system activation; (3)
1164 CHEN et al
FXIIa activation of FXI (to FXIa) triggers the intrinsic coagulation
pathway, leading to clot formation, whereas FXIIa activation of PK
(to PKa) leads to the cleavage of HK and release of bradykinin and
subsequent activation of bradykinin receptors and inflammatory
processes; (4) PKa can positively feedback to activate FXII,40 and
then FXIIa can further activate the downstream pathways and
amplify contact system activation; (5) In the presence of 3E8, 3E8
binds to HK at domain 645 and blocks the binding of PK or FXI to
HK (Figures 2, 4, and 6); (6) DXS can initiate FXII autoactivation,
but DXS-bound FXIIa does not have access to FXI and PK on HK
and therefore cannot effectively activate PK or FXI (Figures 3A-
C,E,F; 5A,C,D,F,G; and 7A,C,D,F,G); (7) Because PK is not acti-
vated, it cannot feedback to activate FXII, and FXII remains
autoactivated by DXS (Figures 3A,D,G; 5A,E,H; and 7A,E,H). As a
result, HK cleavage is blocked (Figures 1, 5A-B; and 7A-B).

HK has important functions in many pathophysiological condi-
tions.4,58-60 KN1-KO mice are protected from ischemic brain
11 APRIL 2023 • VOLUME 7, NUMBER 7
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However, its contributions to common human thrombotic pro-
cesses is unknown. Bradykinin, which is released from HK when it
is cleaved, is involved in many pathologies in a variety of systems
and organs such as stroke, allergic reaction, diabetic retinopathy,
Alzheimer disease, sepsis, colitis, and so on.3,36,37,62-67

Our work shows that an antibody targeting HK effectively blocks
HK cleavage and bradykinin release13 and inhibits activation of
both the thrombotic and inflammatory pathways of the plasma
contact system ex vivo and in vivo, indicating that targeting HK may
provide an additional strategy for treatment of contact system–

related pathological conditions.
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